An overspeed governor is an elevator device which acts as a stopping mechanism in case the elevator runs beyond its rated speed. This device must be installed in traction elevators and roped hydraulic elevators.
Our products are high in demand due to their premium quality, seamless finish, and affordable prices. Furthermore, we ensure to timely deliver these products to our clients, through this we have gained a huge clients base in the market.
Conventional elevator safety equipment includes an overspeed governor for restricting elevator car movement when a predetermined speed is exceeded. Overspeed governors include a switch that opens when the elevator reaches a predetermined velocity such as 110% of rated speed[3]. When the switch opens, power is removed from the machine motor and brake. A braking mechanism, actuated in response to movement of the elevator car by motion transmission means, then impedes the motion of the elevator car. The switch remains open, and the elevator remains inoperable until the switch is manually reset.
Typical governor designs include a sheave coupled to a rope attached to the elevator car. The sheave moves in response to rope movement in tandem with the movement of the elevator car. The sheave drives a shaft or spindle coupled to an actuation mechanism. The actuation mechanism may be a set of flyballs or flyweights adapted to extend radially when a predetermined level of centrifugal force is applied to them. Radial extension of the flyballs or flyweights causes them to contact an overspeed switch. When the overspeed switch is actuated, the power to the motor and motor brake is cut, thereby causing the motor brake to apply a braking force on the motor shaft. If the elevator car continues to increase in speed, a tripping assembly is triggered by the flyweights. The tripping assembly actuates a mechanism to stop the governor rope. Braking of the governor rope causes the safeties to be engaged and thereby stop the car.
How it Works
The system includes a governor that is responsive to elevator car speed through conventional coupling means such as a governor sheave coupled to a rope that is attached to an elevator car, whereby the rope transmits elevator car speed to the governor. When a predetermined speed is exceeded conventional actuation means, such as centrifugal flyweights, trigger a first set of switches and, if the car speed continues to increase, cause actuation of conventional mechanical means to impede elevator car movement. The first set of switches may comprise one switch or any other number of switches, depending on various factors such as the degree of safety redundancy desired or the number of different components dependent upon overspeed conditions. For example, a "safety chain" electrically linking various components and associated switches may be implemented, whereby the opening of one switch renders the system inoperable. The first switch of the first set, for example, may be for the purpose of tripping the remote overspeed switch while the second switch of the first set may be directly in the safety chain.